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Abstract— In this Paper, an algorithm to solve constrained unit commitment problem (UCP) with operational and power flow constraints 
will be developed to plan an economic and secure generation schedule. This Paper presents a quantum gentic algorithm QGA for unit 
commitment problem (UCP) problem. Our approach integrates the merits of both Genetic algorithm and quantum computing and it has two 
characteristic features. Firstly, unit commitment problem UCP has been defined, where the input data involve many parameters whose 
possible values may be assigned by the expert. Secondly, quantum genetic algorithm can represent a linear superposition of states, and 
there is no need to include many individuals. QGA has an excellent ability of global search due its diversity caused by the probabilistic 
representation. Several optimization runs of the proposed approach will be carry out on the test problems to verify the validity of the 
proposed approach. In this perspective, having a quantum version of a genetic algorithm seems to be a relevant topic in the future, when 
quantum computers will be available. Moreover, the integration between the two paradigms can be a way of applying quantum computation 
to hard problems for which a quantum algorithm is not available yet. 

Index Terms—  unit commitment problem; quantum computing; Genetic algorithm. 
——————————      —————————— 

1 INTRODUCTION                                                                     
problem that must be solved frequently by a power utili-
ty is to determine economically a schedule of what units 
will be used to meet the forecasted demand and operat-

ing constraints, such as spinning reserve requirements, over a 
short time horizon. This problem is commonly referred to as 
the unit commitment problem (UCP). The UCP is a mixed-
integer programming problem and is in the class of NP-hard 
problems. In other words, the UCP is to determine a minimal 
cost turn-on and turn-off schedule of a set of electrical power 
generating units to meet a load demand while satisfying a set 
of operational constraints. Because of its size and NP-
hardness, the true optimal solution of the UCP is normally 
difficult to obtain. Many optimization methods have been 
proposed to solve the UCP. For example, we mention the pri-
ority list method [1], branch-and-bound methods [2], dynamic 
programming approaches [3], and Lagrangian relaxation(LR) 
methods [4]. 

In this paper, an algorithm to solve environmental con-
strained unit commitment problem (UCP) with operational 
and power flow constraints will be developed to plan an eco-

nomic and secure generation schedule.   
Evolutionary Algorithms (EAs) [4] are population-based 

optimization techniques based on the classical laws of inher-
itance and Darwin’s theory of evolution. EA is an umbrella 
term that covers several approaches, namely Genetic Algo-
rithms (GA) [5], Evolutionary Strategies (ES) [6], Genetic Pro-
gramming (GP) [7] and Differential Evolution (DE) [8] which 
are based on the same principles but differ in the application 
of these principles. EAs have been successfully used in many 
problem domains. GAs, ES and DE are mainly for search and 
optimization while GP is used more for automatic program 
generation, prediction and machine learning tasks.  

Unfortunately, the UCP is a highly nonlinear and a multi-
modal optimization problem. Therefore, conventional optimi-
zation methods that make use of derivatives and gradients, in 
general, not able to locate or identify the global optimum. On 
the other hand, many mathematical assumptions such as ana-
lytic and differential objective functions have to be given to 
simplify the problem. Furthermore, this approach does not 
give any information regarding the trade-offs involved. Heu-
ristic algorithms have been recently proposed for solving UCP 
[9-12]. The results reported were promising and encouraging 
for further research. Moreover the studies on heuristic algo-
rithms over the past few years have shown that these methods 
can be efficiently used to eliminate most of difficulties of clas-
sical methods. It can be concluded from the foregoing that 
optimization evolutionary algorithms cannot simultaneously 
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meet the requirements of convergence to the optimal solution; 
hence the need to incorporate a mechanism that improves 
convergence to the true optimal solution. Due to these draw-
backs, more and more researches on hybridization algorithm 
are to find the effective hybrid algorithm. Recently, some 
quantum genetic algorithms (QMAs) [13-15] have been pro-
posed for some combinatorial optimization problems, such as 
traveling salesman problem, knapsack problem, and filter de-
sign,…etc.  

This paper intends to present quantum computing based on 
genetic algorithm for solving UCP.  Our approach integrates 
the merits of both Genetic algorithm and quantum computing 
and it has two characteristic features. Firstly, unit commitment 
problem UCP has been defined, where the input data involve 
many parameters whose possible values may be assigned by 
the expert. Secondly, quantum genetic algorithm can represent 
a linear superposition of states, and there is no need to include 
many individuals. QGA has an excellent ability of global 
search due its diversity caused by the probabilistic representa-
tion. Several optimization runs of the proposed approach will 
be carry out on the standard IEEE systems to verify the validi-
ty of the proposed approach.  

2. NONLINEAR PROGRAMMING PROBLEM (NLPP) 
Any evolutionary computation technique applied to a par-

ticular problem should address the issue of handling unfeasi-
ble individuals. In general, a search space S consists of two 
disjoint subsets of feasible and unfeasible subspaces F  and U  
respectively. We do not make any assumptions about these 
sub-spaces; in particular they need not be convex and they 
need not be connected (e.g., as it is the case in the example in 
figure 1) [16,17] where feasible part F  of the search space con-
sist of two disjoined subsets). The general nonlinear pro-
gramming problem [18] for continuous variables  is to find x  
so as to                            

( ) ( )1    , ,....., ,n
nMin f x x x x R= ∈  

Where F Sx∈ ⊆ . The set S R n⊆  defines the search space 
and the set F S⊆  defines a feasible part of the search space. 
Usually, the search space  S  is defined as n-dimensional rec-
tangle in R n  (domains of variables defined as lower and up-
per bounds): ( ) ( )left right ,  1ii x i i n≤ ≤ ≤ ≤ Whereas the feasible 
set F is defined by the search space S  and an additional set of 
constraints: 

( ) 0,           1,.........,     jg x for j m≤ =  

 
Fig.1. A search space and its feasible part. 

 
Thus the nonlinear programming problem (NLPP) can be 

defined as follows: 

( )
( ) ( )

( ) ( ){ }

:     

0, 1,2,...,     0
            s.t.      F=

, 1,....

                       S= ,    1,2,.....,       

n
i j

n
i i i

NLPP Min f x

x R g x i k and h x

j k m

x R l x x u x i n

 ∈ ≤ = = 
 

= +  

∈ ≤ ≤ =

 

At any point Fx∈ , the constraint ( ).kg  satisfy  ( ) 0kg x =  

are called active constraints at x . By extension, equality con-
straints ( ).jh  are called active at all points of F  Nonlinear 

equations ( ) 0jh x =  requires an additional parameter ( )ψ  to 
define the precision of the system [19]. All nonlinear equations 

( ) 0jh x =  (for j = k + 1, … , m) are replaced by pair of inequali-

ties: ( )jh xψ ψ− ≤ ≤ so we deal only with nonlinear inequalities. 

( )
( ){ }
( ) ( ){ }

:     

            s.t.      F= 0, 1,2,.....,                 

                       S= ,    1,2,.....,

n
i

n
i i i

NLPP Min f x

x R g x i m

x R l x x u x i n

∈ ≤ =

∈ ≤ ≤ =

 

3- UNIT COMMITMNET PROBLE UCP 
In the UCP under consideration, one is interested in a solution that 

minimizes the total operating cost of the generating units during the 
scheduling time horizon while several constraints are satisfied [3,20,21] 
 
3.1 The objective function 
The overall objective function of the UCP of N generating units of a 
scheduling time horizon T is  

( )
1 1

( ) $
T N

T it it it it it
t i

F U F P V S
= =

= +∑∑
 

Where 
itU : is status of unit i at hour t (ON=1, Off=0). 

itV : is start-up/ shut-down status of unit i at hour t. 
itP : is the output power of unit i at hour t. 

The production cost, ( )it itF P , of a committed unit i, is conventionally 
taken in a quadratic form: 

2( )  $/Hrit it i it i it iF P A P B P C= + +  
Where ,  ,   i i iA B C are the cost function parameter of unit i. 

The start-up cost itS , is a function of the down time of unit i 
[1 exp( / )] $

i iit i i off down iS So D T T E= − − +  
Where, iSo : is unit i cold start-up cost, and  

iD : is the cold start-up coefficients of unit i. 

iE : is the hot start-up coefficients of unit i. 
3.2. The constraints 
The constraints that have been taken into consideration in this work, may 
be classified into three main groups: 
 Load demand constraints: 

1
,

N

it it t
i

U P PD t
=

= ∀∑
 

Where tPD : is the system peak demand at hour t (MW) 
 Unit Constraints: 

The constraints on the generating units are  
• Generation limits   
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Generate an initial population; 
Evaluate fitness of individuals in the population; 
Do: 

Select parents from the population; 
Recombine (mate (crossover and mutation operators)) 
parents to produce children; 
Evaluate fitness of the children; 
Replace some or all of the population by the children; 

While a satisfactory solution has been found. 
 
 
 

min max ,  i,t
iit it i itU P P P U≤ ≤ ∀  

Where min , max
iit iU P P is minimum and maximum generation limit 

(MW) of unit i. 
• Minimum up/down time  

,   
i i i ioff down on upT T T T≥ ≥  

Where ,
i iup downT T are units i minimum up/down time.  

,
i ion offT T are time periods which unit i is continuously ON/OFF 

• Unit initial status. 
• Crew constraints. 
• Unit availability. 
• Unit derating 
 Spinning Reverse  

Spinning reserve, is the total amount of generation capacity available 
from all units synchronized (spinning ) in the system minus the present 
load demand. 

max
1

( ),
i

N

it t t
i

U P PD R t
=

≥ + ∀∑
 

4- GENETIC ALGORITHM (GA) 
The discovery of genetic algorithms (GA) was dated to the 

1960s by Holland and further described by Goldberg [22]. The 
GAs have been applied successfully to problems in many 
fields such as optimization design, fuzzy logic control, neural 
networks, expert systems, scheduling, and many others 
[23,24,25]. For a specific problem, the GA codes a solution as 
an individual chromosome. It then defines an initial popula-
tion of those individuals that represent a part of the solution 
space of the problem. The search space therefore, is defined as 
the solution space in which each feasible solution is represent-
ed by a distinct chromosome. Before the search starts, a set of 
chromosomes is randomly chosen from the search space to 
form the initial population. Next, through computations the 
individuals are selected in a competitive manner, based on 
their fitness as measured by a specific objective function. 

The genetic search operators such as selection, mutation 
and crossover are then applied one after another to obtain a 
new generation of chromosomes in which the expected quality 
over all the chromosomes is better than that of the previous 
generation. This process is repeated until the termination cri-
terion is met, and the best chromosome of the last generation 
is reported as the final solution. Figure 2 shows The pseudo 
code of the general GA algorithm . 

 
 
 
 
 
 
 
 
 
 
Fig. 2. The pseudo code of the general GA algorithm . 

5- QUANTUM COMPUTING  
Quantum genetic computing QGA 
QGA is based on the concepts of qubits and superposition 

of states of quantum mechanics. The smallest unit of infor-
mation stored in a two- state quantum computer is called a 
quantum bit or qubit [26-30]. A qubit may be in the ‘1’ state , 
in the ‘0’ state, or in any superposition of the two. The state of 
a qubit can be represented as  

| | 0 |1α βΨ〉 = 〉 + 〉         (1) 
Where and are complex numbers that specify the probabil-

ity amplitudes of the corresponding states. 2α gives the prob-

ability that the qubit will be found in  ‘0’ state and 2β gives 
the probability that the qubit will be found in  ‘1’ state. Nor-
malization of the state to unity guarantees 

2 2 1α β+ =  (2) 
If there is a system of m-qubits, the system can represent 

2m states at the same time. However, in the act of observing a 
quantum gate, it collapses to a single state [27]. 
5.1. Representation 

It is possible to use a number of different representations to 
encode the solutions onto chromosomes in evolutionary com-
putation. The classical representations can be broadly classi-
fied as: binary, numeric, and symbolic [27]. GQA uses a novel 
representation that is based on the concept of qubits. One 
qubit is defined with a pair of complex numbers, ( ),α β , as  

α
β
 
 
   

which is characterized by (1) and (2). And an m-qubits rep-
resentation is defined as 

1 2

1 2

...                      
,

...                      
m

m

αα α
ββ β

 
 
 

                                     (3) 

Where 
2 2 1, 1,2,.....,i mα β+ = = . This representation has the 

advantage that it is able to represent any superposition of 
states. If there is, for instance, a three-qubits system with three 
pairs of amplitudes such as 

1/ 21/ 2 1 ...                      
,

0 ...                      3 / 21/ 2

 
 
  

                                    (4) 

the state of the system can be represented as 
1 3 1 3| 000 | 001 |100 |101

2 2 2 2 2 2 2 2
〉 + 〉 + 〉 + 〉                      (5) 

The above result means that the probabilities to represent 

the state | 000 ,  | 001 ,|100〉 〉 〉 and |101〉 are 1 3 1, ,
8 8 8

and 3
8

 

irespectively.  Genetic algorithm with the qubit representa-
tion has a better characteristic of diversity than classical ap-
proaches, since it can represent superposition of states. Only 
one qubit chromosome such as (4) is enough to represent four 
states, but in classical representation at least four chromo-
somes (000),(001),(100), and (101)) are needed. Convergence 
can be also obtained with the qubit representation. As 2

iα  or 
2

iβ  approaches to 1 1 or 0. the qubit chromosome converges 
to a single state and the property of diversity disappears 
gradually. That is, the qubit representation is able to possess 
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the two characteristics of exploration and exploitation, simul-
taneously. 
5.2. Selection operator  

The widely used selection operator is proportional selec-
tion[18]. In this work, a rank-based selection is designed. In 
particular, all individuals of the population are first ordered 
from the best to the worst, then the top partial of individuals 
which predetermined by the analysit (e.g., N/5), are copied 
and the same size of the bottom (e.g., N/5), are discarded to 
maintain the size of population, N. In such away, good indi-
viduals also have more chance to be survive or to perform 
evolution. 
5.3. Crossover operation 

One point crossover is implemented for Q-bit, which is il-
lustrated as follows. In particular, one crossover position is 
randomly determined (e.g. position i), and then the Q-bits of 
the parents before position i are reserved while the Q-bits after 
position i are exchanged, which shown in figure 3.  

2,1 2,2

1,1 1,2 1, 1, 1 1, 1,1 1,2 1,

1,1 1,2 1, 1, 1 1, 1,1 1,2

2, 2, 1 2,

2,1 2,2 2, 2, 1

1

,

,

2

     

.... ...
.....

.... ... ....
..... ... ....

       

.

           

...
i i m

i i m

i i m i

i i m

α α α α α
β β

α α α α α α α α

β β β

β β β β β β β β
+

+

+

+

 
 
   ⇒

 
 



  

↓

1,

2, 1 2,

2, 1 2,

2,1 2,2 12

2,1 2,2 2

1 1,

1, 1 1, ,

...

...

....
.

..
.

.
... .. .

i m

i m

i

i

i

i m

i m

α α
β β

α α α
β

α
ββ β

α
β

+

+

+

+

 
 
   


 
 
  



  

 Fig.3.  Crossover operator 
5.4. Mutation operator 

Mutation operator is done by randomly one position is se-
lected (e.g. position i), and then the corresponding iα and iβ  
are exchanged, which shown in figure 4. 

1,1 1,2 1, 1 1, 1,1 1,2 1, 1 1,

1,1 1,2 1, 1 1, 1,1 1,2 1, 1

1,

1,

1,

1, 1,

              

.... ... .... ...
..... ... ..... ..

     

.

    

i m i m

i

i i

i im i m

α α α α α α α α
β β β β β β β

β
β

α
β α

+ +

+ +



↓

  
⇒   

        
Fig. 4. Mutaution operator 

5.5. Rotation gate for Q-bit 

A qubit chromosome jQ  is updated [27] by using the rota-
tion gate ( )U θ  

cos( ) sin( )
( )

sin( ) cos( )
U

θ θ
θ

θ θ
− 

=  
   

In such a way that the i-th qubit value ( , )i iα β is updated as  
 

cos( ) sin( )
sin( ) cos( )

i i

i i

α αθ θ
β βθ θ
′ −    
=    ′       

Where iθ  is the rotation angle ( , )i i i isθ α β θ= ∆  where 
( , )i is α β is the sign of iθ that determines the direction , iθ∆  is 

the magnitude of rotation angle whose lookup table is shown 
in table 1 . In table1 ib and ix  are the i-th bits of the best solu-
tion B  and the binary solution R respectively. 

 
The value of iθ∆ has an effect on the speed of convergence, 

but if it is too big the solution may diverge to alocal optimum. 

The sign ( , )i is α β determines the direction of convergence to a 
global optimum. the lookup table can be used as strategy for 
convergence this update procedure can be described as fol-
lows. 
5.6. Evaluation 

Binary string X with length m is firstly constructed accord-
ing to the probability amplitudes of individual p with Q-bit 
representation s follows: 

For every bit ( 1,2,... )ix i m= of the string X first generate a 
random number [0,1]η ∈ . The pseudo code of Evaluation algo-
rithm are declared in figue 5. 

 
Procedure make ( { }: ( 1,2,... )iX x i m= = ) 
            Begin 

0i ←  
While ( )i m< do 

1i i← +  
generate a random number [0,1]η ∈  

If 2
iη α>  

Then 1ix ←  

Else  0ix ←  
End  

End 
Fig. 5. The pseudo code of Evaluation algorithm. 

5.7. Repair procedure 

Constraint handing techniques for evolutionary algorithms 
can be grouped into few categories [31]. One way is to gener-
ate solutions without considering the constraints then penalize 
them in the fitness function, this method have been used in 
many previous published work. Another category is based on 
the application of special repair algorithm to correct any infea-
sible solution so generated.  The third category concentrates 
on the use of special mapping (decodes) which guarantee the 
generation of feasible solution or the use of problem specific 
operator s which preserve the feasibility of the solution.  

6-QUANTUM GENETIC ALGORITHM FOR UCP 
6.1. Solution coding 

The solution of UCP is represented by binary matrix (U) of 
dimensionT N× , where N is the generating units and T is the 
scheduling time horizon [20,21]. Figure 6 illustrate the binary 
solution matrix 

 
 
 
 
 
 
 

H
ou

rs
 Units 

1 2 3 4 .. .. N 
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1 1 0 1 1 ... .. 1 
2 1 0 1 1 .. .. 1 
4 0 1 0 1 .. .. 1 

 .. .. .. .. .. .. .. 
. .. .. .. .. .. .. .. 

 .. .. .. .. .. .. .. 
T 0 0 1 1 ... .. 1 

Fig.6. The Candidate solution matrix 
This matrix is represented using Q-bit as follows in figure 7. 

1,1 1,2 1,

1,1 1,2 1,

2,1 2,2 2,

2,1 2,2 2,

,1 ,2

,1 ,

.....................

.....................

.....................

.....................

             ..... 
             .....

N

N

N

N

T T

T T

α α α
β β β

α α α
β β β

α α
β β

 
 
  
 
 
  

,

2 ,

.....................

.....................
T N

T N

α
β

 
 
 
 
 
 
  
 
 
 
 
 
  
  
      

Fig.7. The Candidate solution representation using Q-bit. 
The Candidate solution representation using Q-bit is trans-

formed using evalution process to the following matrix of  
dimesion T N×  as follows : 

1 0 1 ... ... 0
1 0 0 .. .. 0
1 1 0 .. .. 1
... ... ... ... .. 0
.... ... ... ... .. 0
0 1 0 .. .. 0

 
 
 
 
 
 
 
 
    

6.2. Fittness function: The fitness is taken as the reciprocal of 
the total operating cost without any penalty terms, the reason 
is that repair procedure were applied to deal with unfeasible 
individuals. 

 6.3.Selection  : The widely used selection operator is propor-
tional selection. In this work, a rank-based selection is de-
signed. In particular, all individuals of the population are first 
ordered from the best to the worst, then the top N/10 individ-
uals are copied and the bottom N/10 are discarded to main-
tain the size of population, N. In such away, good individuals 
also have more chance to be reserved or to perform evolution. 

6.4. Crossover operation : One point crossover is implemented 
for Q-bit, which is illustrated as follows. In particular, one 
crossover position is randomly determined (e.g. position i), 
and then the Q-bits of the parents before position i are re-
served while the Q-bits after position i are exchanged.  

6.5.Mutation operator: Mutation operator is done by random-
ly one position is selected (e.g. position i), and then the corre-
sponding iα and iβ  are exchanged. 

6.6.Update procedure:  The following pseudo in figure 8, is the 
pseudo code of the upading procedure 

Procedure  update 
  ( { }( , ) : ( 1,2,... ) , 1,2,...j i i iQ q i m j Nα β= = = = ) 

        Begin 
          0i ←  

         While ( )i m< do 

           1i i← +  
          Determine iθ with the lookup table 
          Obtain ( ),i iα β′ ′ as  

          [ ] [ ], ( ) ,T T
i i i i iUα β θ α β′ ′ =  

           End 
q q′←  
End 
Fig.8. The pseudo of update procedure:  

6.7. Repairing Infeasible Individuals: 

The idea of this technique is to separate any feasible individu-
als in a population from those that are infeasible by repairing 
infeasible individuals.  This approach co-evolves the popula-
tion of infeasible individuals until they become feasible indi-
viduals as in the pseudo code in figure 9. 

Procedure  Update 
  ( { }( , ) : ( 1,2,... ) , 1,2,...j i i iQ q i m j Nα β= = = = ) 

          Begin 
           0i ←  

               While ( q′  is infeasible) do 

               1i i← +  
                Create random individual z as 

            Check feasibility 
                  End 

              q q′←  
End 

             Fig.9. The pseudo code of repair algorithm 
Now all individual are in the feasible space.  

6.8.Elitist strategy: Using an elitist strategy to produce a faster 
convergence of the algorithm to the optimal solution of the 
problem. The elitist individual represents the more fit point of 
the population. The use of elitist individual guarantees that 
the best fitness individual never increase (Minimization prob-
lem) from one generation to the next. 

6.9. Stopping rule: The algorithm is terminated for either one of 
the following conditions is satisfied: 
• The maximum number of generations is achieved. 
• When the genotypes (the genotypes structures) of the pop-

ulation of individuals converges, convergence of the geno-
type structure occur when all bit positions in all strings are 
identical. In this case, crossover will have no further effect. 
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ix  ib  
( ) ( )f X f B≥  

( , )i is α β  

  iθ∆  
0i iα β >

 
0i iα β <

 
0iα =  

0iβ =
 

0 0 false 0 0 0 0 0 
0 0 true 0 0 0 0 0 
0 1 false 0 0 0 0 0 
0 1 true 0.05π  -1 +1 1±  0 
1 0 false 0.01π  -1 +1 1±  0 
1 0 true 0.025π  +1 -1 0 1±  
1 1 false 0.005π  +1 -1 0 1±  
1 1 true 0.025π  +1 -1 0 1±  

Table.1. lookup table is shown, where ib and ix  are the i-th bits of the best solution B  and the binary solution R respectively. 
 
 

 Unit1  Unit 
2 

Uni
t 3 

Unit 
4 

Unit 
5 

Un
it 6 

U
nit 7 

Unit 
8 

Unit 
9 

Unit 
10 

max ( )P MW  455 455 130 130 162 80 85 55 55 55 

min ( )P MW  150 150 20 20 25 20 25 10 10 10 

($ / )a h  1000 970 700 680 450 370 480 660 665 670 
($ / )b Mwh  16.19 17.26 16.60 16.50 19.70 22.26 27.74 29.92 27.27 27.79 

2($ / )b Mw h  0.00048 0.00031 .002 .002211 .00398 .00712 .0079 .00413 .00222 .00173 

Min up time MUT (h) 8 8 5 5 6 3 3 1 1 1 
min down time MDT(h) 8 8 5 5 6 3 3 1 1 1 
Hot start cost ($) 4500 5000 550 560 900 170 260 30 30 30 
Cold  start cost ($) 9000 1000 1100 1120 1800 340 520 60 60 60 
Cold  start Hours (h) 5 5 4 4 4 2 2 0 0 0 
Initial status (h) 8 8 -5 -5 -6 -3 -3 -1 -1 -1 

 
Table 2. The data for the 10 unit base system for comparison was taken from 
 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 
Load 

(MW)  
70

0 
75

0 
85

0 
95

0 
10

00 
11

00 
11

50 
12

00 
13

00 
14

00 
14

50 
15

00 
Hour 13 14 15 16 17 18 19 20 21 22 23 24 
Load 

(MW)  
14

00 
13

00 
12

00 
10

50 
10

00 
11

00 
12

00 
14

00 
13

00 
11

00 
90

0 
80

0 
Table 3. Load data 
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Hours Unit1  Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

1 1 1 0 0 0 0 0 0 0 0 
2 1 1 0 0 0 0 0 0 0 0 
3 1 1 0 0 1 0 0 0 0 0 
4 1 1 0 1 0 0 0 0 0 0 
5 1 1 0 1 1 0 0 0 0 0 
6 1 1 1 1 1 0 0 0 0 0 
7 1 1 1 1 1 0 0 0 0 0 
8 1 1 1 1 1 0 0 0 0 0 
9 1 1 1 1 1 1 1 0 0 0 
10 1 1 1 1 1 1 1 1 0 0 
11 1 1 1 1 1 1 1 1 1 0 
12 1 1 1 1 1 1 1 1 1 1 
13 1 1 1 1 1 1 1 1 0 0 
14 1 1 1 1 1 1 1 0 0 0 
15 1 1 1 1 1 0 0 0 0 0 
16 1 1 1 1 1 0 0 0 0 0 
17 1 1 1 1 1 0 0 0 0 0 
18 1 1 1 1 1 0 0 0 0 0 
19 1 1 1 1 1 0 0 0 0 0 
20 1 1 1 1 1 1 1 1 0 0 
21 1 1 1 1 1 1 1 0 0 0 
22 1 1 1 1 1 1 1 0 0 0 
23 1 1 1 0 0 0 0 0 0 0 
24 1 1 0 0 0 0 0 0 0 0 

 
Table 4. Unit commitment schedule 

 
Hours Unit1  Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

1 453 247 0 0 0 0 0 0 0 0 
2 455 295 0 0 0 0 0 0 0 0 
3 450 375 0 0 1 0 0 0 0 0 
4 455 455 0 1 0 0 0 0 0 0 
5 450 370 0 130 50 0 0 0 0 0 
6 455 350 130 130 35 0 0 0 0 0 
7 455 410 130 130 25 0 0 0 0 0 
8 455 455 125 125 40 0 0 0 0 0 
9 450 450 120 130 90 30 30 0 0 0 
10 455 455 130 130 165 30 25 10 0 0 
11 455 450 125 125 165 80 18 20 12 0 
12 450 440 127 132 158 70 28 33 28 34 
13 455 455 125 125 162 43 25 10 0 0 
14 455 450 130 130 95 23 17 0 0 0 
15 455 455 130 130 30 0 0 0 0 0 
16 420 430 100 90 10 0 0 0 0 0 
17 455 455 20 45 25 0 0 0 0 0 
18 450 450 45 130 35 0 0 0 0 0 
19 440 440 130 130 60 0 0 0 0 0 
20 455 455 130 130 160 35 20 15 0 0 
21 450 455 130 130 90 25 20 0 0 0 
22 455 455 20 100 25 20 25 0 0 0 
23 400 400 100 0 0 0 0 0 0 0 
24 455 345 0 0 0 0 0 0 0 0 

 
Table 5. Power sharing (MW) of Unit Commitment problem 
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7. Numerical Computation 

 In order to validate the proposed approach, an example to 
ten units were considered, which include 10 generator units 
with scheduling time horizon of 24 hours.  Table 2 contains the 
detailed data of 10 units test problem.  Also table3 gives the 
houly load demand for the horizon T. Table 4 present the finel 
schedule of the 24 hours, which givem in table 5, in the form 
of its mega watt. 
8. Conclusion  

In this paper, we proposed a new enriched algorithm as 
applies to the unit commitment problem in electric power sys-
tems. The proposed algorithm differes from the other evolu-
tionary algorithms in four respects, First, The UCP solution is 
encoed using aquantum bit, thau saving computer memaory 
as well computational time of the algorithm search procedure, 
where the qibit representation is able to process the two char-
acteristics of exploration and explotation, simultaneosly. 

Second the fitness function is constructed only from the to-
tal operating cost without including penalty terms, ans this 
due to implementation of repai algorithm, which evolve each 
individual until it become feasible. Third, to improve the 
speed of calculation, the reproduction operator are imple-
mented in adifferent way, using quantum operation forth, the 
hyperdization of genetic algorithm with comutum computing 
enriched the search algorithm.  

One test problem from the literature are solved. it shown 
that the proposed algorithm is cablel for gerenting optimal  
solution   
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